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Robust synchronization of chaotic systems
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The question of robustness of synchronization with respect to small arbitrary perturbations of the underlying
dynamical systems is addressed. We present examples of chaos synchronization demonstrating that normal
hyperbolicity is a necessary and sufficient condition for the synchronization manifold to be smooth and
persistent under small perturbations. The same examples, however, show that in real applications normal
hyperbolicity isnot sufficient to give quantitative bounds for deformations of the synchronization manifold,
i.e., even in the case of normal hyperbolicity two almost identical systems may cause large synchronization
errors.

PACS number~s!: 05.45.Xt
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Synchronization is a phenomenon of interest to fie
ranging from celestial mechanics to laser physics, from e
tronics to communications, and from biophysics to neu
science@1#. In particular, synchronization in chaotic dynam
ics @2# has attracted much attention during the last few ye
because of its role in understanding the basic feature
manmade and natural systems. For example, optical com
nication with chaotic wave forms demonstrated both exp
mentally@3# and theoretically@4#, is only possible because o
chaos synchronization between receiver and transmitter
the other hand, the evidence of chaotic behavior in the b
@5# and the importance of synchronization in perceptive p
cesses of mammals@6# indicate a possible role of chaos sy
chronization in neural ensembles@7# as well.

Natural language for description of identical and gene
ized chaos synchronization@8–12# is in terms of invariant,
stable, and robust manifolds@13#. In other words, only syn-
chronization phenomena that are described with stable
robust manifolds can be observed in physical experime
The physical notion of a robust phenomenon contains
separate issues: persistence under small arbitrary pertu
tions of the system~s! and persistence under small noise.
this paper we address only the question of synchroniza
that is robust with respect to small perturbations of the
namical systems involved.

We first repeat the definition of identical and generaliz
chaos synchronization for arbitrary dynamical systems. C
sider a flowf t(z) defined onRn ~or a subset!, where the time
t may take values from the set of real numbers~in this case
the flow is generated by a differential equation! or from the
set of integers~in this case the flow is generated by a ma!.
Furthermore, assume that the full system consists of
coupled~sub-! systems with variables~coordinates! x andy,
with z5(x,y), wherex andy are vectors that, in general, ma
have different dimensions. We say that two coupled syste
are in the state of generalized chaos synchronization if th
PRE 611063-651X/2000/61~4!/3716~5!/$15.00
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exist a chaotic attractorA and a functionh:Rn→Rm, m,n,
such thatM5$(x,y):h(x,y)50% is a stable~i.e., attracting!
and smooth invariant manifold, andA is a subset ofM ~in
other words, the restriction of the dynamics to the invaria
manifold is chaotic!. In particular, whenM5$(x,y):x5y%,
identical synchronization~IS! occurs between the two sub
systems. This description of generalized synchronizat
~GS! is compatible with a recently proposed unified defin
tion of synchronization in dynamical systems@14# and it in-
cludes phenomena like subharmonic entrainment@11,15#.

I. ROBUSTNESS AND NORMAL HYPERBOLICITY

In order to be physically meaningful and experimenta
observable any synchronization phenomenon has to be
bust, i.e., the synchronization manifoldM and its stability
properties have to be persistent with respect to~small! arbi-
trary perturbations of the dynamical systems involve
Therefore, we not only have to ask ‘‘Under what condition
M a stable manifold?’’ but also ‘‘Under what condition isM
persistent under perturbations?’’

In this paper we address the second question that ma
answered as follows. There are two linear mutually ortho
nal spaces associated with each pointzPM : the tangent
spaceTzM and the normal spaceNzM . Let P:TzM3NzM
→NzM be the orthogonal projection to the normal subspa
NzM . Now we consider the linear part,Df t(z), of the flow
f t(z) at the invariant manifoldM. Let v(t)5Df t(z)v(0),
v(0)PTzM , w(t)5PDf t(z)w(0), w(0)PNzM .

The invariant manifoldM is stableif

lim
t→`

iw~ t !i50

for all zPM and all vectorsw(0)PNzM . It is said to be
normally hyperbolicif
3716 © 2000 The American Physical Society
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lim
t→`

iw~ t !i
iv~ t !i 50

for all zPM and all nonzero vectorswPNzM andvPTzM .
In other words, the rate of normal contraction to the manif
is larger than the tangential one. Normal hyperbolicity is
necessary and sufficient condition for persistence of the
variant manifold under small arbitrary perturbations of t
system. The result we have just described is essentially
to Hirsch and Pugh@16–20#.

The conditions for stability and normal hyperbolicity ca
be expressed in terms of Lyapunov exponents. Letr be
an ergodic invariant measure supported inA. Then there
exist m tangential Lyapunov exponents~LE’s! ~equal to the
LE’s of A considered as an attractor of a dynamical syst
restricted toM ) andn2m normal LE’s. We writelmax(r)
for the largest normal LE andmmin(r) for the smallest
tangential LE. We definelmax5supørPElmax(r), lmin
5 inf ørPElmax(r), mmax5supørPEmmin(r), and mmin
5 inf ørPEmmin(r), whereE is the set of all ergodic invari-
ant probability measures supported inA. The invariant mani-
fold is stable iff

lmax,0, ~1!

and the stable manifold is normally hyperbolic if

lmax,mmin . ~2!

If the contraction towards the synchronization manifold
sufficiently strong and if this is true for all trajectories em
bedded in the chaotic attractorA, the manifold is persisten
under perturbations.

We now illustrate the importance of normal hyperbolic
for chaos synchronization using two examples that are b
based on the baker map,

f 1~x1 ,x2!5H ax1 if x2,a1

a1bx1 if x2>a1

~3!

f 2~x1 ,x2!5H x2 /a1 if x2,a1

~x22a1!/a2 if x2>a1 .

As we shall see below, the dynamics restricted to the inv
ant manifold is governed byf5( f 1 , f 2), and therefore we
denote the LE’s off with m ~tangential LE’s!. For the baker
map, a1 , a2 , a, and b are positive real numbers~param-
eters! such thata<b, a1b51, anda11a251. The cha-
otic attractor of the baker map has a natural invariant m
sure that is uniform inx2 and varies wildly in thex1
direction. It is easy to see that the LE’s of this attractor w
respect to the natural measure arem1(rnat)5a1 ln(1/a1)
1a2 ln(1/a2).0 andm2(rnat)5a1 ln a1a2 ln b,0 @21#. In
addition one can show that for all ergodic measuresr, lna
<m2(r)<ln b. Hence, the smallest negative LE of the bak
map only is given bymmin5 lna, and the largest negative LE
by mmax5 ln b. We stress that here we consider the ba
map because it offers the possibility of graphical illustratio
of the synchronization manifold and some of the results
be obtained analytically. However, the main results of t
paper are not restriced to the baker map but hold for
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other dynamical system. For example, similar results for
Lorenz system are reported in Ref.@19#.

II. NORMAL HYPERBOLICITY AND GS

We now show, with an example, that the absence of n
mal hyperbolicity leads to a loss of smoothness for GS ma
folds. To do this, we consider the baker map that drive
linear system,

x~n11!5f„x~n!…,
~4!

y~n11!5ay~n!1« cos@2px1~n!#,

where «.0 is the coupling parameter. For«50 and uau
,1 the full system possesses an attracting invariant mani
M5$(x,y):y50%. If the coupling is switched on («.0) the
full system and this manifold are perturbed. For this exam
the new~perturbed! manifold can be computed analyticall
with the state of the responsey being given by an explicit
function

y5«(
j 51

`

aj 21 cos@2p f 1
2 j~x1 ,x2!#5«(

j 51

`

gj~x! ~5!

of the state variablesx1 and x2 of the drive@20#. Since for
uau,1 the functionsgj are bounded and continuous, the su
converges uniformly and function~5! is therefore properly
defined, continuous, and its graph is a globally attract
invariant manifold of Eq.~4!. For the baker map~3! the
inversef 1

2 j depends onx1 only and therefore the function~5!
and the resulting graph are independent ofx2 in this case.
Furthermore, the size of the perturbation~i.e., the value of«)
is in this case arbitrary, because the response system is l
and « can without loss of generality be chosen to be un
The LE describing the contraction normal to this manifo
equals lna and the tangential LE’s are those of the bak
map. We now want to address the question of whether fu
tion ~5! and the corresponding manifold are differentiable
not. From the numerical experiment of Huntet al. @10# we
know that the function~5! is differentiable fora,a, and it is
not differentiable fora.b. We now give a heuristical expla
nation for this behavior.

From Eq.~3! it follows that Eq.~5! can be rewritten as

y5«(
j 51

`

aj 21 cos~2p@a2 j 1b2 j 2x11F j # !, ~6!

where j 11 j 25 j andF j is a real number. We first conside
the case whena5b. Then Eq.~6! becomes

y5
«

a (
j 51

`

aj cos~2pb2 j x11F!, ~7!

where b5a5b. Equation ~7! is the famous Weierstras
function, which is known to be nowhere differentiable f
b,a @22#. This is essentially due to the fact that the infini
sum,

]y

]x1
[2«

2p

a (
j 51

` S a

bD j

sin~2pb2 j x11F! ~8!
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is divergent for allx1 if b,a. Therefore, fora5b, we have
a sharp transition from a differentiable manifold (a,a
5b) to a nowhere differentiable manifold (a.a5b) at the
critical point (a5a5b).

However, in generalaÞb and we shall assume in th
following a,b. Then, there exist two problems concerni
a rigorous treatment of Eq.~6!. The first one is that Eq.~6!
can be rewritten as Eq.~7! only approximatively. If the driv-
ing trajectory is periodic, then the terma2 j 1b2 j 2 is for large
j proportional to b2 j with b5@ak1bk2#2k, where k5k1
1k2 is the period of the driving trajectory,k1 is the number
of points with slopea, andk2 is the number of points with
slopeb. Thus for example, fork15k251, a2 j 1b2 j 2 may
alternate between two valuesa21b2 j and b2 j , where b
5ab. For chaotic driving trajectories, the terma2 j 1b2 j 2 is
for large j proportional to the Lyapunov number of the dri
ing trajectory, that is, tob2 j5@aa1ba2#2 j ~this follows from
the existence of Lyapunov exponents of the baker map!.

The second problem results from the fact that perio
points of the baker map~drive system! are dense. This mean
that in a neighborhood of any point there exists an infin
number of points with different values of the asymptotic co
stantb. In particular, fora,a,b we can always find close
to a point witha,b another one witha.b. This raises the
question of what we mean exactly by differentiability~or
smoothness! of a functionf:L→@0,1# for an arbitrary set
L,@0,1#, which is beyond the scope of this paper.

The above discussion shows that in generalbP@a,b#.
Thus, fora,a it follows thata,b for all trajectories of the
baker map and the synchronization manifold is aC1 function
for all x1. Note thata,a coincides with condition~2! for
normal hyperbolicity. In the casea.b, condition ~2! for
normal hyperbolicity is violated everywhere on the manifo
which is then likely to be the graph of a continuous b
nowhere differentiable function. We conjecture that this
indeed the case, because fromb,a it follows that b,a for
all trajectories of the baker map and this suggests that Eq~6!
is a nowhere differentiable function. What happens fora
,a,b? The answer to this question is left to future inve
tigations, although our numerical experiments indicate t
asa increases, the invariant manifold looses smoothness
at individual periodic orbits~for a<a<aa1ba2). Then, for
aa1ba2<a<b, the invariant manifold looses smoothness
chaotic orbits and finally fora.b the invariant manifold is
nowhere differentiable function for allx1. We conjecture that
the transition from aC1 to a C0 manifold is typically not
abrupt, but that the invariant manifold locally loses
smoothness whena increases froma to b. Note that one can
generalize this concept toCk manifolds and in this case Eq
~2! has to be replaced by a similar relation. The coup
system~4!, for example, possessesCk synchronization mani-
folds for a,ak. We also note that sincea,1 the synchro-
nization manifold for our example is neverC`.

III. NORMAL HYPERBOLICITY AND IS

In the literature on identical chaos synchronization, sta
ity of the invariant manifold is the only requirement for sy
chronization. This is due to the fact that for identical sy
chronization, the synchronization manifold,x5y, is smooth
even when it is not stable. We show now, by means of
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example, that slight mismatch of the parameters in the c
lmax.mmin may cause the invariant manifold to lose i
smoothness and become a fractal set. For our example,

x~n11!5f„x~n!…, ~9!

y~n11!5 f̃@y~n!#1h„x~n!,y~n!…,

we usef and f̃ to be the baker map~3! with different param-
eters, and the feedback linearization coupling

h~x,y!5 f̃~x!2 f̃~y!1A~y2x!,

with a stable 232 matrix A. Using this active passive de
composition@23# of the drive system we obtain a respon
system that synchronizes globally with the drive. We furth
assume thata1250 so that the eigenvalues ofA are its diag-
onal elements. We also assume that 0,a11<a22,1. If we
definez5y2x, then the dynamics of Eq.~9! can be rewritten
as

x~n11!5f„x~n!…,
~10!

z~n11!5Az1g̃„x~n!…,

where g̃5 f̃2f. Since g̃ is a bounded function, we writeg̃
5«g, where«5maxg̃. Normal LE’s are lna11 and lna22,
while tangential LE’s are those of the baker map. Condit
~2! can be rewritten asa22,a.

In the ideal case, when the parameters of drive and
sponse are the same the synchronization manifoldz50 ~or
x5y) is globally stable. We shall consider now a perturb
tion of the full coupled systems and its synchronizati
manifold in terms of parameter mismatch between b
baker maps. By resubstitution of Eq.~10!, one can show tha
the GS manifold is in this case given by the function

z5«B21(
j 51

`

Cj 21Bg„f2 j~x!…, ~11!

whereB andC5diag (a11,a22) are 232 matrices withb11
5b2251, b1250, andb215a21/(a222a11). Following simi-
lar arguments as above we may conclude that fora22,a Eq.
~11! describes a smooth manifold and we observe robust s
chronization@see Fig. 1~a!#. On the other hand, fora11.b
the manifold~11! has a fractal structure, as can be seen in
Fig. 1~b!.

We now ask the question, ‘‘How small should the pertu
bation~mismatch of the parameters! be so that the perturbe
manifold is close to the original~unperturbed!?’’ Normal
hyperbolicity guarantees only persistence and smoothn
but says nothing about the actual deformation of the ma
fold due to a perturbation. Using example~10! we shall dem-
onstrate that even for fixed, small normal LE’s this deform
tion may become arbitrary large depending on the coupli
The unperturbed manifold isz50. In order to study the de
formation of this manifold we estimate maxuzu for a21@1 to
be maxuzu;«a21. The parameter« is a measure of the pa
rameter mismatch or perturbation and we assume that
small ~but not arbitrary small, because we want to apply t
reasoning also to experimental systems!. If the parameter
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a21 becomes large, the GS manifold~11! deviates signifi-
cantly from the IS manifold and we observe large synch
nization errors~for our system this error grows linearly wit
a21) althougha21 does notinfluence the normal contractio
rates~and LE’s! ! Therefore, even in the case when the sy
chronization manifold is normally hyperbolic, the system
may possess a parameter that influences very strongly
synchronization~manifold!. To demonstrate this effect, w
show in Fig. 2 the same graph as in Fig. 1~a! but now for
a21550. As can be seen, the manifold remains smooth~as
we expect it, because condition~2! is fulfilled! but deviates
significantly from the IS manifoldM5$(x,y):x5y%. Note
that in this caseb2152500 and the eigenvectors@1,2b21#
and @0,1# of the matrixA are almost parallel and all pertu
bations orthogonal to these eigenvectors are strongly am
fied before they converge to zero. Due to the parameter m
match such large deviations fromz50 are excited again an

FIG. 1. Graphy2 vs (x1 ,x2) of the synchronization manifold o
the system~9! of two coupled baker maps~3!. Parameter values ar

a50.5, b50.5, a150.45, a250.55, ã50.49, b̃50.51, anda21

51. ~a! Smooth manifold fora1150.1 anda2250.12. ~b! Fractal
manifold for a1150.8 anda2250.82.
-

-

he
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again and this mechanism is the deeper reason for the st
sensitivity of the synchronization manifold on perturbatio
of the coupled systems.

In this paper we have addressed the problem of robust
of synchronization~manifolds! with respect to~small! per-
turbations of the underlying dynamical systems. It turns
that two different aspects have to be distinguished:~i! per-
sistence of qualititive features such as the existence
smoothness of the manifold and~ii ! boundedness of~quanti-
tative! deformations of the manifold. Both robustness fe
tures have been found to be independent from each ot
Robustness in the first sense is guaranteed for normally
perbolic systems and depends on normal contraction r
that can be measured in terms of normal and tangen
Lyapunov exponents. The~non-! boundedness of deforma
tions of the manifold does not depend on the contract
rates but is related to contraction~and expansion! directions.
Since for many physical systems and applications not o
smoothness of the synchronization manifold but also qua
tative deviations and differences are of importance norm
hyperbolicity seems in this sense not to be a sufficient c
dition for robust synchronization.
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FIG. 2. Graphy2 vs (x1 ,x2) of the synchronization manifold o
the system~9! of two coupled baker maps~3!. Parameter values ar

a50.5, b50.5, a150.45, a250.55, ã50.49, b̃50.51, a11

50.1, a2250.12, anda21550. The manifold is smooth due to nor
mal hyperbolicity but deviates strongly from the identical synch
nization manifoldx5y @compare Fig. 1~a!#.
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